
Virtualisation

billy.trend@gmail.com

October 2014

1

Abstract

This essay examines the usefulness of virtual machines as a solution to
computing problems. It explores the difficulties of their implementation
and how these difficulties may be overcome. Finally, It looks forward to
how virtualisation might develop in the future.

1 Introduction

In computer science, the term virtualisation describes the art of virtualising
whole computers. That is to say developing an abstraction layer that gives a
process or full-blown operating system the illusion that it has exclusive use of
the resources - memory, CPU and I/O - that are presented to it, just as though
it were running on its own dedicated hardware.

There are several software implementations that offer this layer of abstrac-
tion. They are known collectively and synonymously as hypervisors or virtual
machine monitors. Broadly, there are two types of hypervisor. One type (show
left in figure 1) runs as a basic operating system, directly on hardware and has
administration facilities for managing its guest virtual machines. This type may
be used in data centres that host ’virtual private servers’ where the hardware’s
only required function is to manage and run these virtual processes. They are
associated with good performance since the virtualised process is run ’close’ to
the hardware.

The second type of hypervisor (show right in figure 1) virtualises machines
from within a ’host’ operating system. This might be used in a development
environment for simulating a device or server. These hypervisors are popular
among users that need to use applications which require a different operating
systems to their primary systems. ’Parallels’ is a hypervisor that allows users
to run Windows programmes on their Mac.

In general, the virtual machines are known as ’guests’ and the OS that is
running directly on the hardware is the ’host’.[11]

2 Advantages of virtualisation

Superficially, it might seem that virtualisation is a poor way of managing re-
sources: every approach to virtualisation involves necessary overhead that adds
no more functionality to an OS or process that it would have if it was running
natively on its own hardware.[15]

However, the reverse is true. In many scenarios virtualisation makes man-
aging resources easier and more efficient. Take, as an example a number of
web services. They all have conflicting dependencies such that they cannot be
deployed on the same system.

A concrete example of this might be a school that has some databases,
timetabling software, an email service and some file stores. These might each
depend upon a different java version to another; one might be tied to Windows
XP while the others only function on a Unix OS. A solution that does not

1

Figure 1: Types of hypervisor.[11, p. 270]

use virtualisation would require a server box for each service, each running a
different configuration to suit.

This would have a number of disadvantages. Each piece of hardware would
be under-utilised since these sort of web services do not require much processing
time or memory especially in a small organisation. This would lead to unnec-
essary power use and high cost of purchase and maintenance of each machine.
Scaling the services would be hard since each deployment is tied to its physical
server box. If a service was in demand, a new physical server would have to be
spun up manually - even though the other CPUs would likely still be running
at nearly idle.

Virtualisation is an efficient solution to this. A hypervisor can manage all
these systems virtually. This allows many services to exist on the same hardware
without conflicting. Administrators can also move, copy, snapshot and backup
virtual machine instances remotely. If a service becomes under increased de-
mand, it can be duplicated to another server and placed behind a load balancer.
This can all be done with out physical access to servers.

Since this sort of administration is so straightforward to do remotely, there
is a growing trend towards hosting these virtual machines in the ’cloud’. Cloud
is a buzzword for centralised IT services, including Software as a Service (SaaS),
Platform as a Service (PaaS), Virtual Private Servers (VPS) and database as
a service (DBaaS). All of these could be used in the scenario above. VPS
services expose all the functionality required to run web services but without
the complexity of managing the virtual servers. Many give simple interfaces
which allow an administrator to scale a service to meet increased demands;

2

turn off a service but keep a snapshot should it need to be turned on again; and
move services geographically between datacentres. These centralised solutions
provide financial benefits since there is no initial cost of buying hardware or to
scale it. They mean that organisations do not have to commit space, power and
staff to datacentres.

Amazon Web Services (AWS) exemplify how virtualisation can be used to de-
velop efficient and profitable usage of computer resources. Virtualisation allows
Amazon to quantify its compute power and sell it. It is estimated that Amazon
use the open source Xen hypervisor to manage virtual machines on nearly half
a million physical servers.[7] These run the AWS databasing, processing and
general purpose applications.

3 Disadvantages of virtualisation

The strategy of putting all your services on one piece of physical hardware
can have very obvious benefits especially when your services have low resource
utilisation and the hardware is expensive. However, it does not come with-
out disadvantages. David Coyle, at the Gartner’s Infrastructure, Operations
and Management Summit, laid out several problems that are introduced when
systems are virtualised. [1]

If a physical server running many virtual servers breaks down, all the virtual
servers will go down with it. The benefit of having physical machines is that the
chances of all your services going down are lower. A NEC white paper describes
this problem as a ’single point of failure’ and suggests that virtualisation makes
a ’continuity solution’ essential. [9]

It is less possible to predict the performance of a virtual machine. While it
is more straightforward to ring fence a fixed quantity memory for each process,
it is harder to give consistent CPU performance. This is corroborated by a
2006 paper on interference effects in virtual environments: performance inter-
ference may occur when multiple virtual machines are running CPU intensive
processes.[6] Since virtual machines are isolated, it is impossible for them to pre-
dict when their CPU performance may drop. Hypervisors can move machines
with high CPU utilisation to less utilised hardware but this is not instantaneous.

While hypervisors make deployment and management of virtual servers eas-
ier, the system as a whole is arguably more complex than a purely physical
setup. Debugging can be made harder. Problems can no longer be isolated
to one physical server box. This means that more knowledgeable and costly
administrators are required. For economy, this cost must be balanced by the
savings in computer hardware investment.

4 Implementation of virtual machine monitors

In 1974, Popek and Goldberg laid out the aims of their virtualisation project
with the following three rules.

3

’As a piece of software a VMM has three essential characteristics. First, the
VMM provides an environment for programs which is essentially identical with
the original machine; second, programs run in this environment show at worst
only minor decreases in speed; and last, the VMM is in complete control of
system resources.’ [10]

This applies strictly to virtualisation where the guest OS matches the host
OS. This was the only form of virtualisation under development at the time.
More recently, virtualisation solutions are available to virtualise arbitrary guests
on top of arbitrary hosts. However, the principals may still be roughly applied.

Security is an important feature of virtualisation, isolation of guest operat-
ing systems must be such that they cannot interfere with or access the data or
namespaces of other guest systems. This is particularly important in a plat-
form such as AWS where guest systems might be owned by mutually untrusting
parties. Digital Ocean - a low cost VPS provider, similar to AWS’ EC2 - came
under fire when they neglected to scrub (zero over) a virtualised instance’s stor-
age space by default after it was destroyed. This meant that other instances that
were created subsequently by any customer could read fragments of the stor-
age of previously-destroyed instances. This made it possible to piece together
private information and keys. [5]

4.1 Challenges

For clarity, I will initially limit my account of the technical challenges and
implementation of virtualisation to that of processes and operating systems
that share the common denominator of being built for the x86 instruction set.
This includes the main desktop and server systems: Linux, Mac and Windows.

Conceptually, virtualisation is fairly easy to grasp at a high level; it can
be diagrammed with neat, clear divisions between host systems, the hypervisor
and guest systems. In practice, there are significant technical challenges to
successfully virtualise a system.

It can be desirable for a hypervisors to support operating systems without
modification. Most systems are designed and built primarily to run directly on
hardware. For this reason, a hypervisor must ensure that a system has access
- or appears to have access - to all the architectural features that it would
if it were running directly on physical hardware. At the same time it must
ensure that guest operating systems don’t interfere with each other or the host
operating system. There are some instances where these two constraints come
under contention.

4.2 Protection rings

Hardware architectures implement ’protection rings’. These securely manage
how processes use available computer resources such as memory, CPU and IO.
Processes operate within different protection rings depending on how privileged
their access to hardware needs to be. The kernel is generally an operating
system’s lowest level process. It handles base functionality such as memory

4

management and system calls. This means it must operate in the most privileged
ring - ring 0. Instructions permitted in ring 0 may access protected areas of
memory and define procedures for interrupt handling.[14, p. 30-32]

A compromise must be made here. A hypervisor cannot allow guest processes
to directly execute ring 0 instructions because they would break the isolation of
each process, causing security and practical issues. However, since an unmod-
ified process expects to be able to be able to use ring 0 features, a hypervisor
must be able to emulate them.

4.3 Memory Virtualisation

Memory protection is covered by largely protection rings, loading and storing of
memory needs be virtualised. Memory virtualisation is built into most systems
already: processes are given the impression of a contiguous set of memory loca-
tions which have a constant size and are directly accessible even though some
may be actually cached. These facts mean that memory virtualisation is less
complex than implementing protection rings. All modern CPUs have silicon
dedicated to memory access making it more efficient. [16, p. 6]

5 Solutions

5.1 Binary Translation and Full Virtualisation

Binary translation is a ’heavyweight’ emulation technique. It isolates a guest OS
by directly translating its instructions to those of the host architecture. Binary
translation is an effective virtualisation technique but the translation process is
done just in time like an interpreter for a language like python. This provides
considerable overhead. For an x86 guest running on an x86 host, this overhead
is redundant since most of the time, translation process simply converts x86
commands that operate at lower privilege than ring 0 to x86 commands with
the same privilege.

In these cases, virtualisation can be made more efficient by using binary
translation only on the subset of instructions that require privileged ’ring 0’
execution. User level code is executed directly on the host CPU. This means
that most of the operations of the guest d system have similar performance to
those of the host OS. This approach is known as full virtualisation. [11]

Full virtualisation is sufficient to fully decouple Host and Guest systems.
That is to say the guest process has no idea it is being virtualised. According to
VMware it is the best virtualisation method for isolation and security. Since it
supports unmodified operating systems, it also offers the best in migration and
portability. A system may be moved from a virtualised environment to native
hardware without any special adaptation.[16, p. 4]

5

5.2 OS Assisted Virtualisation or Paravirtualisation

Paravirtualisation requires that the guest operating system is modified to re-
move any functionality which requires privileged instructions and that cannot
be virtualised. These are replaced by ’hypercalls’ which communicate directly
with the host hypervisor. Hypercall interfaces handle all the functionality that
is usually only accessible in ring 0.

The argument for paravirtualisation is that it has lower overhead than the
binary translation solution. It does however introduce maintainability issues
since the hypercall implementation must be updated as the guest operating
system is updated. It is easier to develop an effective hypercall interface than
it is to perform binary translation reliably. CPU paravirtualisation cannot be
implemented without vendor support by unmodifiable (closed source) operating
systems such as Windows since the source code cannot be changed at a kernel
level. Higher level features such as graphics card virtualisation can be supported
by installing appropriate drivers to the host OS. This is a good compromise since
it offers performance increase without needing to modify the kernel. [16, p. 5]
Hypervisors such as virtual box can install these drivers by mounting a virtual
disk to the virtual machine.

5.3 Hardware Assisted Virtualisation

Since protection rings are implemented at a hardware level, it makes sense that
hardware vendors have taken steps to solve the problems that they create for
virtual machines. A new root privilege ring below ring 0 allows hypervisors to
run at higher privilege to the guest operating systems so that the guest systems
may execute privileged instructions directly to the hardware.

The guest operating system’s state is stored in the extra silicon implemented
by hardware vendors. Depending on which process is running privileged instruc-
tions, this state is switched between the operating systems and the hypervisor
thereby preventing conflict.[16, p. 6]

6 Virtualising devices and I/O

In principal, any system can be run as long as there is a way of storing data,
such as memory, and a way of processing data, a CPU. Up until now, I have
provided an account of how such processing of instructions and memory may
be virtualised. However few operating systems work in this sort of isolation.
Modern day applications require hardware services such as network interfaces,
hard drives and graphics processors to name but a few.

Hypervisors can emulate these peripherals. In some cases this is simple: if
the emulated hardware is roughly analogous to the available hardware. Virtual
box for example, offers 6 types of virtual network cards. Some emulate physical
AMD cards, some Intel and one is paravirtual card for improved performance.
Virtual box translates the guest operating systems commands into network re-

6

quests and offers various modes of connection to the host and outside world.
Sometimes however, it is not so simple.

The Dolphin-Emu project attempts to fully emulate nintendo games consoles
for PCs. The target architecture for the software on most games consoles is very
different to many PCs, since games consoles tend to use optimised hardware
which provides performance, power and cost benefits. The Wii is built for the
PowerPC instruction set which is interpreted dynamically by dolphin through
binary translation. There are, however, more significant challenges in emulating
Wii architecture.

A particular area of focus for the Dolphin project was emulating the ’Flipper’
and ’Hollywood’ GPUS for the Nintendo Gamecube and Wii respectively. Both
GPUs use integer maths in their pipelines which is unlike common PC GPUs
which use floating point maths. Operations such as those involving integer
overflow must be handled especially. For example, when you add 1 to an 8 bit
integer of value 255, it should overflow to 0. To emulate this behaviour on a
floating point GPU, the following code may work.

frac(value * (255.0/256.0)) * (256.0/255.0)

This line of code essentially maps the integer ’value’ to a floating point
number between 0 and 1. If the integer is lower than 0 or higher than 255,
the result is an overflow, still between 0 and 1. However, this code has many
edge cases and often intermediate steps compromise performance. An example
on the Dolphin-Emu blog post compares two numbers 49.999 and 50.003 which
equivocate on the wii integer math GPU but do not on floating point GPUs.
This - it claims - is enough to make the difference between an object appearing
on screen or not.

The area of GPU emulation is problematic since there are not standard
instructions sets; vendors implement their own interfaces and provide drivers
for different platforms. This has made things difficult for the dolphin project
where a fix for one GPU architecture may cause a bug in another. [8]

7 Targeting other instruction sets

The solutions discussed up to now only work when the host and guest processes
are both built to use the x86 instruction set. This is a fair constraint since most
desktop OS use x86 because it is supported by the leading CPU manufacturers.

It is worth exploring however how it is possible to virtualise or ’emulate’
processes with alternative instruction sets on an x86 platform. It cannot be
simply a question of installing drivers to the guest OS since instruction sets
underpin even drivers.

The problem is usually solved using an involved form of binary translation
which translates every instruction to the target architecture. This technique
is employed by the QEMU. QEMU provides full CPU emulation of guest in-
struction sets x86, x86-64, ARM, SPARC, PowerPC, MIPS, and m68k for host
architectures x86, x86-64, and PowerPC. [11]

7

It is important to have this as an option since there may be legacy OS which
require different architectures but nonetheless still have uses. A good example
of where emulation is useful is in running mobile device emulators (often built
for ARM chipsets) on PC hardware for development purposes.

8 The Future of Virtualisation

8.1 Industry development

Large companies necessarily have the biggest virtual server deployments and
therefore are the strong indicators of future development of virtualisation.

Ravello, a company which helps other companies use cloud technologies to
improve their businesses, has a blog post on its interests in the future of vir-
tualisation. They describe a paradigm in which not just single machines are
virtualised but whole hardware stacks. These would be portable across arbi-
trary hosts. For example, you could deploy whole virtual datacentres consisting
of many virtual machines and networking appliances. This would allow easy
management of complex services.[4]

In a presentation for VMware in 2010, Larry Rudolph shared his view of
virtualisation’s long-term future. He envisages an intelligent hypervisor that
moves virtual machine instances to appropriate pieces of hardware based on
their requirements and usage at any given moment. For example if a VM is
using a significant amount of disk I/O, it may be moved to an instance which
has access to fast solid state drives. If it needed more compute power, it might
be migrated to a super computer or a server with a powerful graphics processing
unit. These migrations would happen seamlessly with minimum downtime.

In the same presentation, Rudolph describes a more consumer-focussed usage
of virtualisation. As imersive 3d technologies continue to develop, virtualisation
may allow us to carry our technology between the real world and simulated
worlds. Our mobile phone might appear exactly the same to us in a game such
as second life as it does in our real life. [13]

8.2 Containerisation

Disruption is a well established business process in the computer industry. It
is when small startups undercut whole industries using alternative solutions. It
is therefore shrewd to identify up and coming alternatives to industry practices
that could be described as dogmatic. Containerisation - though already over a
decade old - is the best example of this in the virtualisation space.

Containerisation includes the two of the main advantages of virtualisation
at the technical level. One is the isolation of namespaces such as files, network
interfaces, inter-process communication pipes and process ids. The other is the
allocation of physical resources such as memory, It brings about the benefits of
easy dependancy management, reduced chance of conflicts between services and
flexible limits on memory usage of services.

8

Containers provide this virtualised execution environment without the over-
head associated with virtual machines. They rely on the unix kernel features,
namespace and cgroups to enact resource and namespace isolation. The benefits
of this are the reduced startup and shutdown times for containers since they are
not full-blown operating systems. Containers are limited by the host OS: you
cannot run a ubuntu container on OS X for example. [12]

Containerisation has been popularised recently by an open source project
called Docker. Unlike a hypervisor which is executed as a software layer or
interface with the host computer, throughout the existence of a virtual machine
in its execution, Docker takes a back seat, managing only the creation and
deployment of containers. The company that developed Docker has received
50 million dollars in funding and is in production in enterprise [2]; namely at
Spotify, eBay and Yelp[3].

9 Conclusion

In this essay, I have explored the various solutions to virtualisation and the
motivations for its deployment. Virtualisation is likely to continue to be a very
relevant focus of research. While it is widely used, none of the implementations
mentioned in this essay have won out as an undisputed ’best practice’. With
technologies such as Docker gaining momentum, it is likely that there will con-
tinue to be diversity in the virtualisation space. This reflects other areas of
technology; databasing for example has a similar diversity of roughly analogous
services with many different implementations.

Despite the technical challenges presented by virtualisation, it is likely that
continued improvement in hardware and software support will cause solutions
to become more efficient, fault tolerant and easy to use.

Words: 3686

References

[1] David Coyle. 7 Side Effects of Sloppy Virtualization. url: http://www.
networkworld.com/article/2281117/data-center/7-side-effects-

of-sloppy-virtualization.html?page=1 (visited on 10/09/2014).

[2] Crunchbase. Docker. url: http://www.crunchbase.com/organization/
docker (visited on 10/09/2014).

[3] Docker. Use Cases. url: https://www.docker.com/resources/usecases/
(visited on 10/09/2014).

[4] Geert Jansen and Alex Fishman. The Future of Virtualization. 2013. url:
http://www.ravellosystems.com/blog/the-future-of-virtualization/

(visited on 10/09/2014).

9

[5] Sean Michael Kerner. “Scrubbing Data a Concern in the Digital Ocean
Cloud.” In: eWeek (2014), p. 14. issn: 15306283. url: http://search.
ebscohost.com/login.aspx?direct=true\&db=buh\&AN=93513807\

&site=eds-live.

[6] Younggyun Koh et al. “An Analysis of Performance Interference Effects
in Virtual Environments”. In: (2006). url: http://www.neotextus.net/
wp-content/uploads/2013/03/ispass07.pdf.

[7] Huan Liu. “Amazon data center size”. In: 2013. url: http://huanliu.
wordpress.com/2012/03/13/amazon-data-center-size/.

[8] MaJoR, JMC47, and Neobrain. Pixel Processing Problems: On the Road
to Pixel Perfection. url: https://dolphin-emu.org/blog/2014/03/
15/pixel-processing-problems/.

[9] NEC. “Integrated System Continuity Solutions for Virtual System Con-
solidation”. In: (2008). url: http://www.nec.com/en/global/prod/
expresscluster/en/collaterals/pdf/WP_virtual_system_continuity\

_nec_en.pdf.

[10] Gerald J. Popek and Robert P. Goldberg. “Formal requirements for virtu-
alizable third generation architectures”. In: Communications of the ACM
17.7 (July 1974), pp. 412–421. issn: 00010782. doi: 10.1145/361011.
361073. url: http://portal.acm.org/citation.cfm?doid=361011.
361073.

[11] Fernando Rodŕıguez-Haro et al. “A summary of virtualization techniques”.
In: Procedia Technology 3 (Jan. 2012), pp. 267–272. issn: 22120173. doi:
10.1016/j.protcy.2012.03.029. url: http://linkinghub.elsevier.
com/retrieve/pii/S2212017312002587.

[12] RAMI ROSEN. “Linux Containers and the Future Cloud.” In: Linux
Journal 240 (2014), pp. 86–95. issn: 10753583. url: http://search.
ebscohost.com/login.aspx?direct=true\&db=buh\&AN=95781759\

&site=eds-live.

[13] Larry Rudolph. Future of Virtualisation. Tech. rep. Ravello, 2010, http://www.ravellosystems.com/blog/the–
future–of–v.

[14] Abraham Silberschatz, Peter B Galvin, and Greg Gagne. Operating system
concepts essentials / Abraham Silberschatz, Yale University, Peter Baer
Galvin, Corporate Technologies, Inc., Greg Gagne, Westminster College.
Hoboken, NJ : Wiley, 2014., 2014. isbn: 9781118804926. url: http://
search.ebscohost.com/login.aspx?direct=true\&db=cat00290a\

&AN=sta.b2096124\&site=eds-live.

[15] Amit Singh. An Introduction to Virtualization. 2004. url: http://www.
kernelthread.com/publications/virtualization/ (visited on 10/09/2014).

[16] VMware. Understanding Full Virtualization, Paravirtualization, and Hard-
ware Assist. Tech. rep. url: http://www.vmware.com/files/pdf/

VMware_paravirtualization.pdf.

10

